Vitamin K-dependent proteins in Ciona intestinalis, a basal chordate lacking a blood coagulation cascade.
نویسندگان
چکیده
We have isolated and sequenced several cDNAs derived from the sea squirt Ciona intestinalis that encode vitamin K-dependent proteins. Four of these encode gamma-carboxyglutamic acid (Gla) domain-containing proteins, which we have named Ci-Gla1 through Ci-Gla4. Two additional cDNAs encode the apparent orthologs of gamma-glutamyl carboxylase and vitamin K epoxide reductase. Ci-Gla1 undergoes gamma-glutamyl carboxylation when expressed in CHO cells and is homologous to Gla-RTK, a putative receptor tyrosine kinase previously identified in a related ascidian. The remaining three Gla domain proteins are similar to proteins that participate in fundamental developmental processes, complement regulation, and blood coagulation. These proteins are generally expressed at low levels throughout development and exhibit either relatively constant expression (Ci-Gla1, gamma-glutamyl carboxylase, and vitamin K epoxide reductase) or spatiotemporal regulation (Ci-Gla2, -3, and -4). These results demonstrate the evolutionary emergence of the vitamin K-dependent Gla domain before the divergence of vertebrates and urochordates and suggest novel functions for Gla domain proteins distinct from their roles in vertebrate hemostasis. In addition, these findings highlight the usefulness of C. intestinalis as a model organism for investigating vitamin K-dependent physiological phenomena, which may be conserved among the chordate subphyla.
منابع مشابه
Uncoupling heart cell specification and migration in the simple chordate Ciona intestinalis.
The bHLH transcription factor Mesp has an essential but ambiguous role in early chordate heart development. Here, we employ the genetic and morphological simplicity of the basal chordate Ciona intestinalis to elucidate Mesp regulation and function. Characterization of a minimal cardiac enhancer for the Ciona Mesp gene demonstrated direct activation by the T-box transcription factor Tbx6c. The M...
متن کاملConstruction of a cDNA microarray derived from the ascidian Ciona intestinalis.
A cDNA microarray was constructed from a basal chordate, the ascidian Ciona intestinalis. The draft genome of Ciona has been read and inferred to contain approximately 16,000 protein-coding genes, and cDNAs for transcripts of 13,464 genes have been characterized and compiled as the "Ciona intestinalis Gene Collection Release I". In the present study, we constructed a cDNA microarray of these 13...
متن کاملUnraveling genomic regulatory networks in the simple chordate, Ciona intestinalis.
The draft genome of the primitive chordate, Ciona intestinalis, was published three years ago. Since then, significant progress has been made in utilizing Ciona's genomic and morphological simplicity to better understand conserved chordate developmental processes. Extensive annotation and sequencing of staged EST libraries make the Ciona genome one of the best annotated among those that are pub...
متن کاملFibroblast growth factor signalling controls nervous system patterning and pigment cell formation in Ciona intestinalis
During the development of the central nervous system (CNS), combinations of transcription factors and signalling molecules orchestrate patterning, specification and differentiation of neural cell types. In vertebrates, three types of melanin-containing pigment cells, exert a variety of functional roles including visual perception. Here we analysed the mechanisms underlying pigment cell specific...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 43 شماره
صفحات -
تاریخ انتشار 2006